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I Introductory Comments 
This document reports the work completed on the NASA research grant NAG-1-612, 

entitled "Response of  Joint-Dominated Space Structures." The work falls into two 
categories: 1) developing an efficient method for calculating the transient response 
of  a nonlinear system such as a large joint-dominated space structure and 2) 
investigating the effect o f  gravitational loading and joint scaling on the dynamic 
response of  model structures. The results o f  the investigations on these t w o  topics 
are reported in Section 2 and Section 3, respectively. 
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Abstract 

A new, efficient linearization method i s  presented for  calculating the transient 

response of nonlinear systems due to initial disturbances. The method is an 

extension of the describing function approach in which the steadystate response o f  

the system is calculated by representing the nonlinear element, typically joints in the 

the case of space structures, by impedances which are functions of the amplitude of 

response. Thus, the problem of solving the differential equation for the steady-state 

response becomes one of solving a set of nonlinear algebraic equations involving the 

steady-state amplitudes and phases of the system. It is shown that for  the transient 

case the steadystate impedances can be averaged over the range of response in 

order to provide equivalent values of stiffness and damping that, for a given set of 

initial displacements, may be treated as being constant for purposes of calculating 

system response. 

Single-degree-of-freedom systems are used first to demonstrate the method and 

then to develop an approach for optimizing the joint's characteristics so as to 

minimize transient response times. The use of this method for response estimation 

and optimization in multiple-degree-of-freedom systems is investigated subsequently. 

Nomencla twe  

6 

c, C,' c 

f 

n f 

amplitude of x (slowly varying with time) 
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effective value of instantaneous system damping 

force from nonlinear friction element 
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Superscripts 

* 

st i f f  ness 

stiffness o f  nonlinear friction element 

effective value of instantaneous system stiffness 

mass 

normal load on friction contact 

t ime 

half period 

eigenvectors 

displacements 

modal displacements 

eigenvalues of linearized system 

coefficient of fr ict ion 

phase lag 

wt  - 9 

8 value at which nonlinear element transitions f rom stick to slip 

frequency 

natural frequencies 

fraction of critical damping 

nondimensional ized quantities 

quantities averaged over a range of response 

Additional 

Bold type indicates a vector or matrix quantity 
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Introduction 

An important problem related to the design of space structures is that o f  predicting 

their dynamic response. This process is particularly dif f icult  when dealing with 

structures that contain a large number of  joints that exhibit nonlinear, hysteretic 

behavior. For example, this may be the case for prefabricated truss structures that 

are designed t o  collapse into a dense package for transportation t o  orbit. The truss 

is then expanded in space by utilizing joints that are especially designed t o  rotate 

and lock into place. The dynamic response o f  such structures is said t o  be joint 

dominated if the amount of damping or the stiffness of the system is strongly 

affected by the joints' behavior. I f  damping in the system is primarily due to joint 

hysteresis then joint behavior controls the amplitude of the steady state response as 

wel l  as the rate at which transients decay. Additionally, in some cases, joint 

f lexibil i ty can significantly reduce the stiffness of the structure, thus reducing i ts  

natural frequencies and altering the associated mode shapes. This paper discusses a 

new approach that may be used to efficiently estimate the transient response of such 

systems. 

The transient response of nonlinear systems is usually calculated by time 

integration methods that employ finite differences in time; see, for  example, Hughes 

111. This approach has two disadvantages when it is  applied to the design of joint 

dominated structures. The f irst i s  that it is  computationally intensive. This would 

be especially the case for the type of complex three-dimensional truss structures that 

are proposed for space applications since they have a large number degrees of 

freedom. Secondly, the problem is nonlinear and, consequently, the solutions lack 

generality. For example, the rate of decay o f  a transient would depend on the 

specific magnitude and distribution of the assumed initial displacements and 

velocities of the structure. Since the number of degrees of freedom is large, it is 

not reasonable to consider all possible initial conditions. So one dif f iculty faced by 

the design engineer is in trying to select those conditions that are of critical 

importance to the design and to simulate the corresponding system response when 

there is such a large number of possible cases t o  consider. Neither the selection nor 

the simulation process is particularly feasible if t ime integration is the only 

procedure available for  calculating the response o f  the system. 

In this paper an approximate method is developed for estimating the transient 

response of nonlinear systems in terms of linearized modes of response. Its 

advantages are that it is computationally more efficient than the t ime integration 
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method and that it is  possible to  view the design problem in the more traditional 

physical terms of  modal response. For example, i f  it is most important t o  damp the 

larger amplitude, low frequency response one can easily focus on that issue by 

isolating the response Of the f irst few linearized modes. Consequently, by utilizing 

this approach the design problem should become more tractable. The major drawback 

o f  the approximate method is loss o f  accuracy. It is  our view that both approximate 

methods and time integration have their roles in design. Approximate methods 

provide efficient tools for performing parametric studies and they supply physical 

insights into how to  optimize system performance that are not easily inferred from 

strictly numerical methods. Time integration provides a method for assessing the 

accuracy of the approximate solution for key simulations and for fine tuning the final 

design. 

In the procedure presented here the nonlinear system is approximated by an 

equivalent linear system in which the system parameters are constant over th6range 

o f  transient response. The method is an extension o f  the describing function 

approach used to  calculate the stesdy-state harmonic response of  nonlinear systems. 

In the describing function approach the response is assumed to  be essentially 

harmonic and the nonlinear element is represented by impedances which depend on 

the amplitude o f  response. As a result, the problem of solving the differential 

equation for the steady-state response becomes one of  solving a set of nonlinear 

algebraic equations for the steady%tate amplitudes and phases associated with the 

various degrees o f  freedom o f  the system. In the transient case considered here the 

steadystate impedances are averaged over the range o f  response in order to  provide 

equivalent values of  stiffness and damping that, for  a given set o f  initial conditions, 

may be treated as constants for purposes o f  calculating system response. We refer 

t o  this approach as the Amplitude Averaging (AA) Method. Once equivalent 

parameters are identified for the system, conventional methods can be employed for 

analyzing the resulting linear system. Related studies have been summarized, for 

instance, by Iwan and Gates t2J. 

The AA Method is derived from an efficient t ime integration procedure presented 

by Sinha and Grif f in t31 in which single t ime steps were used to  step from one 

peak o f  the oscillation to  the next. Their approach in turn, was based on the idea 

that the response may be approximated as a sinusoid in which the amplitude and 

phase vary slowly with time (see, for example, Caughey [41). 

In the f irst part o f  this paper the AA Method is illustrated by  applying it t o  a 
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single-degree-of-freedom (SDF) system exhibiting the bilinear hysteretic behavior 

typically associated with Coulomb friction. While the method is not restricted t o  

this type o f  nonlinearity this behavior was selected for analysis because it is 

representative of the type o f  severe nonlinearity that occurs in actual joints. A half 

cycle method similar t o  that used by  Sinha and Grif f in is presented in order t o  

illustrate the linearization process and in order to develop "instantaneous" values o f  

the nonlinear element's stiffness and damping. The instantaneous values of  the 

element's parameters, which effect ively characterize the joint's properties at a given 

amplitude of response, are then averaged over a range of amplitudes in order t o  

calculate the constant stiffness and damping values used in the AA Method.' Since 

an equivalent, constant damping has been determined for the system it may be used 

to select joint characteristics (the friction slip load in this example) so as t o  

maximize average joint damping and minimize transient response times. In the 

second part of the paper a general approach that may be used fo r  multiple-degree-of- 

freedom (MDF) systems is given and applied to the two body problem. In each case, 

the accuracy of the approach is assessed by comparing results f rom the approximate 

method wi th  those obtained using standard t ime integration methods. 

Single Degree of Freedom Systems (SDF) 

In order to demonstrate the AA Method, we  develop a solution for  the bilinear 

hysteretic SDF system depicted in Figure 1. The equation of motion for  the system 

is 

mj; + c i  + k~ - - fn (1) 

where fn is  the nonlinear force from the fr ict ion element and the dots represent 

differentiation with respect to time. During oscillation, the fr ict ion joint remains 

locked until the magnitude of the spring force, Ikd(x-y)l, equals the fr ict ion force 

pN. The joint then slips with a constant resistive force of magnitude pN until the 
mass reaches an extremum of oscillation, at which point the joint locks up again. 

The magnitude of the relative displacement (x-y) required to cause slip is designated 

as xcrit, where 

'In the exmple used here to demonstrrto the gproach. the instmtmeout joint proporties .re dcuhtod 
Actual joint properties may be calculated from Irborrtory tests that nn.ru0 the joint's stedy -0 rulytiul ly.  

-toresit curves. See Crmby (51 for m example of s t d y  state joint chractriution 



P N  x .  = -  
cr't kd 

5 

(2) 

The Half -Cycle Method 

If the transient response is approximately a sinusoid that has an amplitude and 

phase which vary slowly with time, then over a l imited t ime span it may be 

approximated as x = B cos@, where t9 = ut - j .  We assume that the nonlinear force 

fn exhibits the same periodicity. Expressing fn in a Fourier series, we obtain (see 

Menq and Griffin, [SI) 

f = F (B) cos8 + Fs(B) sin0 + (higher harmonics) (3) n c  

where, for  the case of Coulomb friction considered; 

o s e a s a  (6) 

In the case of experimental joint data, the Fourier coefficients can be calculated 

numerically from hysteresis curves using numerical integration. 

If we keep only the fundamental harmonics and truncate the expression (3) after the 

first terms, we can express fn as 

Thus (1) becomes, 
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.. F F 
m x + (  c - 5 )  . + (  k + g ) x = O  

or. 

.. 
mx + C (B); + keff(B)x = 0 (9) eff 

where teff and keff are defined in a manner consistent with (8)  and because they 

pertain t o  a specific amplitude are referred to as the instantaneous damping and 

stiffness o f  the bilinear spring. Alternatively, we may write (9) as 

where C and U, are both functions of B 

The damped natural frequency of this system may be similarly defined as 

It is observed that during transient oscillation of the nonlinear system, the response 

i s  similar t o  the decaying sinusoid seen in linear analysis. It is  reasonable to 

assume that the motion of the nonlinear system from one extremum of oscillation t o  

the next extremum is representable as the decay o f  a linear system over a half-cycle. 

As an example, we  consider a system decaying from initial conditions of some 

init ial displacement Bo and zero initial velocity. Let Bi denote the amplitude of the 

i* extremum (occuring at t ime ti) and Bi+l denote the amplitude of the next extremum 

(at t ime ti+,). Then from linear theory, the t ime elapsed between one extremum and 

the next i s  approximately 
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and the relationship between successive peaks is 
2 112 

-(,nl(l - Ci 1 
B,+l = - Bi e (15) 

Given the initial amplitude Bo, we can efficiently estimate successive extrema and 

the t ime increments at which they occur f rom (14) and (15). Since the extrema occur 

each half cycle, we refer t o  this method as the Half-Cycle Method. 

This Half-Cycle Method is an efficient way o f  approximating a numerical t ime 

integration t o  find extrema of transient oscillation. Numerical simulations of SDF 

systems show that this method i s  accurate for nonlinear systems in which c = kd/(k + 

kd) 5 0.5 and provides a reasonable approximation for the amplitude of response for  

e > 0.5. The Half-Cycle Method results were compared to more accurate solutions 

generated by fourth order Runge-Kutta time integration. The comparison of the half 

cycle estimates to the numerically generated "exact" solutions is shown in Figures 

2a-d where the Half-Cycle estimates of the extrema of response are shown as points 

(the exponential decay envelopes pictured are a result of the new Amplitude 

Averaging Method and will be discussed later). For nonlinearities of c > 0.5, the 

system experiences an offset that is  not accounted for  in the Half-Cycle Method. 

However, the peak lopeak amplitude estimates are approximated reasonably wel l  

despite this offset. It may be observed that for  these simulations this approach 

yields conservative estimates of system behavior in that it overestimates the 

amplitudes of response. 

Amplitude Averaging Method 

We now introduce a new linearization called the Amplitude Averaging (AA) Method. 

In this approach, the half-cycle values of damping and stiffness are averaged over 

the entire response range of interest. Consequently, while these average values are 

nonlinear functions of the init ial displacement, they are constants as far as the 

transient response analysis is concerned. 

The A A  Method i s  also based on equations (3) through (6). Linear, constant 

parameters are derived by averaging cIff and keff from (9) over the nonlinear range 

of oscillation, i.e., 
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BO 
f (B) 

E (BD) = c + Ee(BD) = C + 1 dB/(Bo - xcrit) 
eff  Bw x .  

crit 

- f (B) 
kef f  o 

(B 1 = k + 5; (BD) k + f dB/(Bo - xcrit) 
e B x .  

crit 

where w in (16) is given by (12). After averaging, (8) becomes 

mz + (c + Ee(B0)& + (k + Ee(Bo))x = 0 

(16) 

(17) 

(18) 

For the example of Coulomb friction, the analysis can be simplif ied by expressing 

the, averaged properties in terms o f  several nondimensional parameters: (normalized 

quantities are denoted by a e superscript) 
-_ ... 

'i; (B ) = k i?(B*) 
e o  d e o  

where 

and 

cO = 2mwo = 2(m kd"' 

k 
;* (Bo.) = ( - + Ee*(B 0 *) ) 'I2 

kd 

(19) 

(2 1) 

(22) 

- 
ke?Bo*) and E)Bo? are the nondimensional averaged stiffness and damping of the 

fr ict ion element. These quantities are of  particular interest because their values may 
be calculated in terms of the single nondimensional parameter, Be*, the initial 

displacement divided by the displacement required for slip t o  occur. 
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For Coulomb friction from (41, (17), and (191, Ee* is given by 

* 
BO 

. 

where 

and need be calculated only once. The nondimensional frequency ;* is then obtained 

from (121, (17). and (19) as 

k -e 
w (B *) = ( - + 0 *) )li2 

kd 
0 (25) 

Lastly, from (51, (161, and (201, the average nondimensional damping is approximated 

as 

a 
BO 

which, upon integration, yields 

Note that the parameters are averaged only over the range in which they exhibit 

nonlinear behavior. The system is linear for Bo* less than one and the response can 

be calculated using standard methods in that regime. 

The AA Method gives a linear estimate o f  the nonlinear behavior of  the system. 

Results f rom the AA linearized systems are shown in Figures 2a-d as exponential 

decay envelopes, and are plotted wi th the Half Cycle Method and Runge Kutta results 
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for  comparison. AS with the Half-Cycle Method, we again see conservative 

estimates of system amplitudes and again the estimates are more precise for weakly 

nonlinear systems. 

An important result of the AA Method is shown in Figure 3. This figure shows the 

normalized quantities ke*(Bo*), c,*(Bo*), Ee*(Bo*), and C,.(Bo*) in terms of the 

nondimensional initial displacement Bo*. It is  observed that there are optimal system 

configurations which maximize either instantaneous or average damping in the system. 

These optimality conditions depend only on the nondimensional initial displacement 

B *. Thus, by 

adjusting just one of these parameters, say, normal load for example, it is  possible 

t o  optimally damp an existing system. For example, the points A, B, and C on the 

average damping curve can be thought of as three systems which are identical except 

for  the tightness of the friction joint as indicated by the normal load (normal load = 

N, N, > Ne > Nc). Comparing the linear average damping terms provided by the AA 

Method for the three systems, it is seen that system B, with normal load N,, has the 

highest value of average damping and is an optimally damped system for this set o f  

basic parameters. The optimality of system B in an average sense was confirmed by 

fourth order Runge-Kutta simulations. The results for  the three systems A, B, and C 

are shown in Figure 4, where successive extrema have been connected to form an 

envelope of decay. The normal load N, is not simply the largest or smallest normal 

load which could be applied, nor is i t  equal t o  the load which would be required to 

optimally damp only the f irst oscillatory swing in the transient motion (this normal 

load would correspond to the conditions of system D of Figure 3 which maximizes 

instantaneous damping). 

Recall f rom (23) that Bo* is dependent on the system parameters. 
0 

Runge-Kutta simulations confirm the optimality results which were readily provided 

by the A A  Method. We observe, however, that the optimality result would not have 

been nearly so obvious if an exact t ime integration alone had been used to 

investigate this transient behavior. It is also noted that the AA Method provides 

general results in that it allows for parameter-based comparisons of different 

systems. Numerical t ime integration methods lack this generality, yielding instead 

results which are case-specific and thus more dif f icult  to interpret when comparing 

systems. 

The AA Method leads t o  systems which are optimized, in an averaged sense, over 

the entire range of nonlinear behavior. The Half-Cycle Method may be used to 

generate systems which are optimal in a "first swing" sense. It is also possible to 
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optimize the system over other select ranges of nonlinear behavior. This is done by 

averaging the ccff and keff equations over the particular range of  concern, resulting in 

a new curve for CC.(Bo*). The optimal normal load (or other parameter) is the one 

which adjusts the nondimensional initial condition so as to  maximize the value o f  

this new Ee?Bo*). The linearizations described so far make it possible to  optimize 

the nonlinear system, in an average sense, over any range of  nonlinear behavior. 

The Amplitude Averaging Method has yielded a general result which was not 

obvious from numerical time integrations. In the next section, the application o f  the 

AA Method to  multiple mass systems is developed and it is shown that the 

principles o f  generality-of-results and optimal damping sti l l  apply, only that they now 

apply in a modal sense. 

Multiple Degree of Freedom Systems 

The transient analysis of multiple-degree-of-freedom (MDF) nonlinear systems using 

the AA Method can be accomplished by representing the system in modal form in 

terms of a sum of SDF nonlinear systems. The SDF components are linearized 

separately and are then combined to  form a linear representation of the MDF system. 

In the linearization process, a nonlinear fr ict ion damper will be replaced by linear 

elements which approximate i ts behavior, as depicted in Figure 5. The original 2DF 

system incorporates a fr ict ion damper as a nonlinear element and will serve t o  

illustrate the application of the Amplitude Averaging Method to MDF nonlinear 

systems. The equations of motion for  the system may be writ ten in matrix form as 

where 
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MDF Linearization 
I 

In the SDF analysis we were able t o  regard the init ial amplitude across the friction 

damper as the maximum distance that the joint would be stretched during transient 

oscillation. In the MDF system, the initial amplitude across the joint is no longer 

guaranteed to be the maximum span which the joint experiences. Consequently, the 

nonlinear system cannot be linearized by simply considering the isolated fr ict ion 

damper and how much it is init ially displaced. Instead, one must use a modal 

approach in the linearization process. 
. .  

It is necessary t o  decouple the nonlinear MDF system of Figure 5 into two SDF 

nonlinear systems so that the A A  Method may be applied t o  each of the decoupled 

systems separately. Decoupling of linear systems is  done routinely (see, for  

example, Thomson 171) w h i l e  nonlinear systems are not generally amenable to such 

analysis. The nonlinear decoupling and modal linearizations may be accomplished 

with the iterative epproach summarized in Appendix A. In this approach, a set of 
converged eigenvalues and eigenvectors i s  obtained and used to form a modal 

(decoupled) representation of the nonlinear system. The decoupled systems are 

linearized using the A A  Method and are transformed back to the original coordinates 

t o  yield a linear MDF system. 

Several approximations are made during the decoupling process. Viscous damping 

i s  generally small and is, therefore, neglected in order to avoid the inconvenience of 
dealing with complex eigenvectors. The complex formulation could be pursued in 
order to increase the overall accuracy of the linearization and estimation scheme. 

Another assumption made in the analysis is  that each modal fr ict ion joint operates 

independently. This approximation signif icantly simplif ies the calculations, but 

introduces an additional source of error in those cases where modes interact. This 

latter assumption i s  believed t o  be  responsible for the fact that the modal AA 

response estimates are no longer conservative in some instances. 
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However, in general the results obtained from the AA Method compare reasonably 

well  wi th results from direct t ime integration. The modal comparisons for two cases 

are shown in Figures 6 and 7. where .the t ime integration solutions have been 

transformed from the original x coordinates into the converged modal coordinates, y, 

and y2, by using the converged eigenvectors. Overall, the exact modal solutions 

(represented by  the continuous curves) are seen t o  be similar in form to decaying 

sinusoids centered about a zero equilibrium state. The neatness (symmetry and 

sinusoidal appearance) of the exact results indicate that the converged linear 

decoupling does in fact represent the nonlinear behavior fair ly well, as the response 

in x coordinates would transform poorly if the modal representation were not a 

reasonable estimate of system response. 

Several characteristics of the AA Method as applied t o  MDF systems are illustrated 

in Figures 6, 7, and 8. Firstly, the AA estimates are not conservative in the lowest 

mode when both modes are actively slipping.2 Secondly, it was found that the larger 

the viscous damping and nonlinearities in a mode, the less "neat" the modal 

response looks (this i s  apparent in Figures 7b and 8b). Thirdly, a MDF system can be 

modally optimized in a fashion similar to that used t o  optimize the SDF system. As 

in the SDF case, the correct manipulation of the normal load shifts the 

nondimensional modal initial condition to a condition which generates the optimal 

(modal) damping. It i s  noted that it is not generally possible to optimally damp both 

modes simultaneously, as the optimization of one mode results in a detrimental or 
non-optimizing shif t  of the other mode. Figure 6 shows a system which i s  not 

optimally damped in either mode. Figure 7 shows the same system after the normal 

load has been adjusted t o  optimally damp the higher frequency mode (mode 2). 

Notice that the results are plotted on different scales in Figures 6 and 7. In Figure 

8b, the extrema in the numerical t ime integration solutions for the non-optimized- 

mode 2 and optimized-mode 2 systems have been scaled for direct comparison 

(extrema plotted to form decay envelope). From Figure 8b it i s  obvious that the 

optimization has a significant ef fect  on modal response. The same system was 

optimized in mode 1 and the results depicted in Figure 8a Note that in this particular 

system the fr ict ion damping in the f irst mode was quite small compared io viscous 

damping and, consequently, optimizing joint damping had l i t t le impact on first mode 

response (an expanded scale was used to show the optimization result more clearly). 

The AA optimization results for  both modes 1 and 2 were confirmed by Runge-Kutta 

21t w.t fwnd that if only one mode was actively slipping th. accuracy of the AA method for MDF ryrtorns 
was comparable to that found for SDF system. 
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simulations. Thus, although the modal AA extrema may be nonconservative in some 

cases, the AA indication o f  modal optimality remains accurate in the cases 

considered. 

The AA Method may thus be used to optimally damp select modes of particular 

concern. This is helpful in the design process in that it gives an easy indication of  

which systems are optimal in a given situation. In practice it may not be possible 

to obtain joints wi th characteristics that exactly correspond t o  this modeled 

optimality, in which case the issue may become one of  selecting the most nearly 

optimal joint configuration f rom a variety of available designs. 

Conclusion 

This paper has discussed the specific application of the Amplitude Averaging 

Method to fr ict ion damped systems. However, the A A  Method is a general 

linearization method applicable not only to  fr ict ion damped systems but also to other 

systems which exhibit nonlinear hysteretic behavior. 

The A A  Method is efficient and can be used to easily establish optimization 

conditions, subject to t ime integration verification. Familiar modal analysis may be 

applied to MDF nonlinear systems and systems may be optimized over specific 

ranges of nonlinear oscillation. Furthermore, the A A  Method can be used t o  modally 

optimize MDF systems in order to suppress system response over specific frequency 

ranges. 

The A A  Method may also be used as a comparison tool in the system design 

process. The physical parameters of the system may not be adjustable to the 

indicated optimal values. For example, in the case of jointed structures and fr ict ion 

damping, it i s  not generally possible to select physical joints wi th adjustable 

(optimizable) normal loads. In this situation the task may be one of selecting joints 

from a variety of designs. The AA Method yields the relative averaged damping in 

these designs for amplitudes of response which are representative of those 

encountered in practice and thus may be employed as a method of comparison in 
order to help choose the most nearly optimal design. 

The A A  Method is an efficient design tool for two reasons. One is  that the 

method i s  computationally efficient. In the cases considered in this paper, A A  

solutions could be calculated an order of magnitude more quickly than numerical t ime 

integration solutions. In addition, the method provides a system representation in 
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terms o f  linearized modes and, consequently, it becomes relatively easy to  establish 

optimum system response. Again, it is our view that numerical t ime integration and 

the A A  Method are complimentary approaches and that both have their places in the 

design o f  nonlinear systems. The A A  Method is a computationally efficient approach 

which supplies analytical insight at the expense o f  accuracy, while the 

computationally intensive time integration approach provides verification and f ine 

tuning o f  the results for  select cases of interest. 
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A, ITERATIVE METHOD FOR DECOUPLING AND 
LINEARIZING A NONLINEAR MDF SYSTEM 

The goal here is t o  represent the friction joint by  equivalent linear elements for  a 

given set o f  initial displacements. To  this end we must find a modal representation 

o f  the fr ict ion element which depends (as in the case o f  the SDF system) on the 

initial modal displacements. It is not possible, however, t o  calculate the mode 

shapes or eigenvectors of the system and find the initial modal displacements unless 

we know all the stiffnesses of  the system (including those o f  the friction joint). 

This appendix summarizes an iterative procedure for simultaneously establishing the 

eigenvectors and initial modal displacements o f  the system and the equivalent joint 

properties of  the friction element. 

This method neglects damping in determining the eigenvectors o f  the system. This 

is a reasonable approximation for---lightly damped systems. There are seven steps in 

the process, which are illustrated b y  applying them to the two-degrees-of-freedom 

(2DF) system of Figure 5. 

1. Write the governing equation o f  the system in matrix 
viscous damping, e.g., for  the 2DF system of Figure 5 

M i  + Kox = fn [ -l, ] 
form, neglecting 

(A. 1 

where KO = K. 

2. Find the eigenvalues and eigenvectors of the linear part of the system, 
momentarily disregarding the nonlinear term fn. Form the matrix of 
eigenvectors, U, e.g., 

U = Iu,,uzl ... matrix of eigenvectors. 

3. Assume x can be represented in terms of modal coordinates y - (y,,yJT, 
Le., 

x = w  (A.3) 

then 
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y = u - ' x  

The modal initial conditions can be found using (A.3) and the orthogonality 
of the eigenvectors (with respect to  M) 

yo = u- 'xo 

4. Using x = Uy in (A.1) yields 

MU/; + KoUy = f n [-: ] 
UTMUV + UTKoUy = UTfn[:] 

5. Find linearized stiffnesses for each independent mode using the A A  
method. This step yields 

U'MUV + UTKoUy = - Kqy - Cq; 

(Analogous to: 

- f t - x + >; .- kex - cox 
n B WB 

as done in the SDF case in equations (7,8,16,17,18) in the main body of 
the paper.) K is a diagonal matrix, each diagonal element is  the 
linearized st i f fnsss of the fr ict ion element in i ts respective mode, e.g., in 
the example 2DF system, slip occurs when 

pN kdkl - x2) = k y + k y dl 1 d2 2 

where 

k = kdUi t 1,-13 
di 

Assume that slip occurs independently in each mode. Then the modal 
displacement required for slip is 

PN 
(analogous t o  xcrit = -) 

PN 
Yi = - 

crit k di kd 
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The modal initial conditions were found in Step 3. Given the initial 
conditions and the slip conditions, the AA method may be applied to  each 
mode separately in order to  linearize the decoupled systems. From the 
first mode, the linearized stiffness term is -ke . Mode 2 yields -ke . 

1 2 

L 

The linearized modal stiffnesses have 
simultaneously but not used at this point in 

been found (Cq is found 
the analysis). 

6. Convert back to  original coordinates: 

x = u-'y 

Substituting into the linearized governing equation from Step 5: 
- 1  

M;' + K ~ X  = - uT K ~ U - ' ~  (neglect CJ 

def ine 
- 1  

Krnod UT KqU-' 

then 
M;'+(K 0 +K,od)X=O 

7. K, = KO + Kd, then 

M;' + K,x = 0 

But this system has different eigenvalues and eigenvectors than the 
original system considered in Step 2. The linearization of  Step 5 was 
dependent on the eigenvectors of the system, which have changed after 
linearization. To obtain a more accurate linearization, repeat Steps 1-7 
using the eigenvectors f rom the Ml,K, system. 

The process (Steps 1-7) may be repeated as many times as needed t o  obtain a 

converged set o f  eigenvectors using M,Kg). In practice, this method usually 

converged in four iterations and never required more than six iterations. 

While the linearized damping can be readily calculated at any iteration, it is  

neglected along with any original viscous damping in estimating the eigenvectors o f  

the system. For this reason, the method is  less accurate when high viscous damping 

or large nonlinearities are present in the system. A complex eigenvalue and 

eigenvector approach could be used to  improve the accuracy when the damping terms 

are large. 



19 

In the current approach the equivalent linear damping f rom the friction joint is  

calculated for each mode only after the eigenvectors have ful ly converged. This is 

added to  the modal viscous damping to establish the total effective damping 

(analogous to (16)) for  each mode. The response of each mode is then calculated in 

the same manner as for a linear single degree o f  freedom system to obtain the 

comparisons indicated in Figures 6 and 7. The physical displacements may be readily 

calculated from (A.3). 
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Figure 2 

Figure 3 

Figure 4 

Figure 5 

Figure 6 

Figure 7 

Figure 8 
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Figure Captions 

Single Degree of  Freedom System. 

Comparison of  Results for m = k + k, = pN/kd = 1 and c = 0.02. 

Instantaneous and Average Values of  Stiffness and Damping. 

Response Envelopes Indicate Optimum Damping. 

Schematic of Linearization Process. 

Modal Response of MDF System: 
= 0.01, k, = 0.25, and pN = 0.1. 

k, = k3 = m = 1, k2 = 2, c, = c2 

Modal Response When Second Mode Optimally Damped: pN 
Changed to  0.35. 

Comparison o f  Modal Response Envelopes. 
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1. INTRODUCTION 

Many engineering structures are subjected to motions in which limited slip can occur 

between members. This is frequently the case for bolted and riveted structures and can also 

occur in joints found in space applications. Truss structures designed for space often are 

constructed with joints that can rotate and lock into place. T h s  allows the structure to collapse 

into a compact package that is easily transported to space and then expanded. Typically, t h s  

type of joint mechanism is subject to limited slip behavior because of "slop" due to machning 

tolerances. In  addition. joint slip is usually constrained by friction forces within the mechanism. 

T h s  means that the joint's motion is controlled by friction until it reaches the end of the free 

play and then it is constrained elastically. T h s  type of nonlinear behavior can have a strong 

influence on system response. In particular, because of the limited slip or the 'gap' aspect of the 

joint behavior scaled models of the jointed structure may not respond dynamically in the same 

manner as the full scale structure in space. This may be the case for two reasons. 

The first reason that a scaled model of a structure may not have the same dynamic 

response is that tolerances in the joints are not scaled. Typically, engineers wish to have joints 

that behave as linearly as possible. Consequently, when they are designing the full-scale joint 

they stipulate as small tolerances as possible to reduce slop and the associated nonlinear behavior. 

When sub-scale models of the joint are developed for testing, the same absolute tolerances are 

stipulated since they cannot be further reduced. As a result, the free-play in the sub-scale joints 

is, on average, significantly greater than in full-scale joints and the model structure will exhbit 

stronger nonlinear behavior. 

A second reason that a scaled model of a structure may behave differently is that it may 

be tested under gravitational loading that does not occur in space. While there are laboratory 

procedures for supporting two dimensional structures ( i.e. structures that have modes in whch  

the motions lie in a plane) in such a way as to negate gravitational effects, they are not readily 

applicable to more complex, three dimensional structures. As a result, it is in general not 

possible to eliminate gravitationally induced preloads in the joint. The preload introduces a static 

displacement in the joint that tends to eliminate the free-play in one direction. Thus, for 
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example, the joint may behave elastically in the direction of the applied preload, and slip only 

when motion occurs in the opposing direction (in contrast to a joint without any static loads that 

slips in both directions). As a result, from a dynamics point of view, a joint with preloads 

tends to be effectively stiffer and contributes less damping to the system. A goal of the current 

research is to gain a better understanding of t h s  effect. 

T h s  research considers the dynamic response of the lumped parameter system depicted in 

Figure 1. The system may be viewed as either a model of a single degree of freedom oscillator 

or a single mode representation of a general structural system as characterized by a given modal 

mass, stiffness and damping. The nonlinear element that represents the joint is indicated by the 

linkage having the spring stiffness kd. In this linkage the friction element can slide once the 

magnitude of the force builds up to pN. Slip at the friction contact point is limited by the stops 

located at distances SI and S2 and the total gap is given by S. The system is subjected to a 

sinusoidal excitation and a static preload f . This system was chosen for examination because it 

is the simplest system whch exhbits the characteristics of interest and yet, in a modal sense, has 

implications to a broad class of systems. To date we have concentrated on understanding the 

steady-state response of ths system. 

1 

The steady-state response of the system is important for two reasons. The first is that it is 

easier to analyze than the transient response and, consequently, it is easier to establish important 

nondimensionalized system parameters. Since these parameters control transient response as well 

as steady-state response the final issue is how much they change in going from a full-scale to a 

sub-scale system. For example, one suspects that static preloads have little effect when the 

system’s response is large since the amount of energy dissipated by friction is then independent of 

the static loads. This can be readily quantified by analyzing the system’s steady-state response to 

establish for what range of dimensionless parameters t h s  is true. T h s  analysis is easier to 

perform for steady-state response because well established techniques (the describing function 

approach) exist for determining approximate solutions. The resulting analytical solutions are 

superior to numerical simulations because they are easier to compute and more general. Secondly, 

it has been shown in other work recently performed at Carnegie Mellon that the steady-state 
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behavior of a system can be used to estimate its transient response. Thus, it is clear that gaining 

an understanding of the factors that control the steady state response also has a direct bearing on 

how it will behave in the transient regime. 

Iwan has analyzed a similar limited slip system in [ l ] .  I t  differs from that considered 

here in that it did not contain the spring with stiffness k (refer to Figure 1 )  nor did he consider 

static preloads. Both of these factors are important in space applications. 

2. ANALYSIS 

The solution approach is explained in this section. In Part 1, the governing equation for the 

system is described. Its normalized form is given to provide a basis for parametric studies. The 

approximate method is introduced in Part 2, and the equations for calculating the frequency 

response are derived. Part 3 presents the procedures for obtaining the resonant responses. Part 4 

shows how the frequencies and amplitudes where the vertical jumps occur are obtained. The 

procedures described in these sections provide an approach for understanding the unstable response 

phenomenon discussed in the latter sections. 

2.1. Formulation of Governing Equations 

The equation of motion for the system shown in Figure 1 is, 

m ; ; ( t ) + c ~ ( t ) + k x ( t ) = f ~ c o s w t + f i  - fn(x,3, ,3 , )  (1 )  

where f ,  is the static load, and In is the nonlinear friction force at the joint. 

The contact pressure on the joint, N. is assumed constant, and the inertia of the friction 

element is neglected. Therefore, f n  is constant throughout the length of the friction element. 

The friction element will slide once the magnitude of the nonlinear force f n  equals N 

multiplied by p ,  the friction coefficient of the materials in contact. 

The nonlinear force f a  is a 

kd is the stiffness of the friction 

distances 3 , .  6, are sufficiently 

P N  function of the mass displacement x. When 1x1 5 -, where 

element, the system is linear. When I X I  2 - , and the stop 

large, the system has elasto-plastic behavior. When the stop 

kd 
P 
‘d 
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distances, 8 ,  , 5 ,  are not large enough, the system experiences a sudden hardening phenomenon. 

If the mass displacement X is periodic, several different hysteresis cycles of f n  vs. x can be 

drawn, as shown in Figures 2-6 ( In the figures, A is the amplitude of the steady-state vibration 

and B is the static offset). 

To render a foundation for the parametric study, equation 1 can be converted into a 

nondimensional form as shown below 

d'k/dT' + C d k / d i  + 2 =  COS;^ + A ,  - A,F( k, 8,/8, .. ) 

Where, 

( 2 ,  

- 
x =  x / x , ,  and xo = f o / k  

t = ?/ to  and t o =  d f l  - 

x i  = f , /f( ,  . l = c / f i k  
- 

A, = ,N/fo 9 w=  W h o  

As can be seen, the nondimensional scales are unities if the quantities rn, k,  f were set to 

Ths  fact is adopted in the sections below as a way to present general results. 

0 

unity. 

One purpose of thls study is to understand the steady-state response of the system shown in 

Figure 1. Although t h s  task can be accomplished by solving equation 1 numerically for a 

sufficiently long period of time, such an approach is inefficient and computationally expensive. 

Therefore, an alternate, more efficient method is developed. The direct, long time solution is 

then used only to verify the accuracy of the analytical results in certain representative cases. 

2.2. Approximate Method 

Based on the fact that the excitation is periodic: we assume that the response is also 

periodic. Therefore, the displacement x can be expanded by Fourier series. In the steady-state, the 

response is approximately harmonic, i.e. 

x = Acos 8 + B , where 8 = wt  - p ( 3 )  

In the above, the offset term B is included to compensate for the shift due to the static load f,. 
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The method used here was adopted in several earlier papers [ 1 1  [ 2 1  131 that studied the 

friction damping of structures. Since the nonlinear force f n  depends on the oscillation of 

displacement x ,  it is also harmonic and can be linearized by representing it in terms of a 

truncated Fourier series as shown below. 

f = f ,  + fcCm 8 + fcsin 0 

In the above, F,. F,. FS are nondimensional Fourier coefficients established in the Appendix and 

u .  b, 7 and q are dimensionless parameters also established in the Appendix (see equation 43).  

It is noted that since the dynamic displacement is proportional to cos 8. it is apparent from 

equation 4 that fc  contributes to the dynamic stiffness of the system w h l e  f S  provides damping. 

The stops shown in Figure 1 suddenly contribute to the elements stiffness and significantly 

inhibits joint damping. As can be seen in Figure 7, the magnitude of fS decreases with the 

amplitude right after the limit stops are ht. 

To obtain the approximate solution, equations 3 and 5 are substituted into equation 1. 

After equating the linearly independent terms, the phase shift t is eliminated by using the relation 

sin 2t + cos ’t = 1. Then the following two nonlinear algebraic equations are obtained. 

Equations 6 and 7 are solved iteratively to get the frequency response of the vibratory 

amplitude A and the permanent offset B. 
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2.3. Calculation of Resonant Response 

By holding the system parameters constant, the resonant vibratory amplitude A is obtained 

as 

a A  
- = 0  at w = w m  
aw 

To relate equation 8 with equations 6 and 7, it is observed that A and B are both 

functions of w .  Consequently, g, , g, are only functions of W ,  and 

d g ~  a A  a B  + -- + - = o  -- -- - 
dw a A a w  aBaw aw 
dgz % a A  ag2 

dw a A a w  aBaw aw 
+-- + - = o  -- -- - 

From equation 6 ,  we know ag, / a w  = 0 , thus equations 8 and 9 imply 

= k f O  
39, = 0 and since from equation 6 - 

at? a, a B  

39, a B  -- 

We have 

8 B  
- = 0  at w = w m  
aw 

Consequently, from equation 10 

( 1 1 )  

(12) 

dw 

Thus, the three equations that determine the resonant values A and B at the corresponding 

resonant frequency of excitation are 

g,( Am. Bm* om ) = 0 
g * ( A m . B m . w m )  = o  

3% 
--( Am, B m ,  om ) = 0 
a W  

(14 )  

To solve equation 14, it is noted that equation 6 is decoupled from equations 7 and 13 .  

And from the relation (7) + ( 1 3 ) ~  = 0, we have 

Fw4 m + G o : + H = O  (15) 
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where 

F = 5 (  mAm )’ 

G = 3 { (  c2 - 2mk )A2 rn - 2mAmfc 1 

H = (kAn1)2 + f ;  + 2kAmfc + f 2  h - f 2  0 

By substituting equation 13 into equation 7, we have 

(16 )  

Therefore, from equations 14, 15, 16 and 17, the following iterative equations for 

calculating the resonant response can be obtained 

f l  - f b  

To solve equation 18. group values of ( Am, Brn, wm ) are first initialized to calculate the 

, Bm, and Fourier coefficients f f ,  f . Iterations are then made utilizing equation 18 until A 
b’ s c m 

wm converge. 

2.4. Calculation of Vertical Jumps 

When the system parameters are constant, the vertical jumps occur when 

aw 
- 0  at u = w j  

a A  
-+oo or -- 
aw a A  

The above constraint is imposed on equation 7 to get the following relation as 

dg, ag2aw ag2 ag2 

d~ a w a A  a A  a A  
+-=- = O  at o = w .  ---- - 

J 

where 

E 

a A  a A  

at  w = w .  
a f s  

J 
+ (  wcA- f  )( w c - - ) = O  

a A  

(19)  

( 2 0 )  
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From the relation ( A a f ' / a A  + f\ ) (20)  - ( 2 A f ' ) ( 7 )  = 0 , we obtain the following equation 

R w J  + Sw' + T = 0 (21 )  

where 

a f  
+ (  f ' + f ' - f t ) ( f  + A > )  

' a A  
P C  

and the frequencies at w h c h  jumps occur are obtained by 

Analogous to the approach used in the last section, equation 23  together with equations 6 

and 7 provide the basis for calculation of the vertical jumps. 

3. NUMERICAL RESULTS 

The numerical results are presented in ths section. Part 1 shows representative plots of the 

amplitude as a function of frequency of excitation and discusses how various parameters affect 

the response. Part 2 indicates how changes in the system parameters affect the peak response 

amplitude. The effects of gap length on dynamic response are shown in Part 3 and Part 4. Part 

3 describes the existance of disconnected amplitude solutions and how .the gap and static preload 

affect them. Part 4 introduces the minimum gap length for unstable response to appear and how 

instability is affected by preload. Finally, two cases of transient response are given in Part 4. 

They show that the system parameters that dictate the steady-state behavior of the system also 

control transient response. 
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3.1. Frequency Response 

To examine the validity of the approximate method; equation (1)  is solved directly using 

the Runge-Kutta method. The steady-state response is then obtained from the "long time" transient 

solution. The results are compared with the ones calculated by the approximate method. These 

comparisons are plotted in Figures 8-12 in which the discrete symbols denote the transient 

solutions. These figures show that a good agreement exists between the two approaches. 

In Figure 8, the influence of gap length 6 on the vibratory amplitude frequency response is 

shown. For d = O ,  the system is linear. For d + 00, the friction joint is dominated by friction 

damping, and the system behaves plastically. In between, a transition region exists for a certain 

range of d values where the system shfts  from elastic to plastic behavior. In this region, the 

vibratory amplitude A may become multi-valued at some fixed excitation frequencies. T h s  

phenomenon is typically referred to as "unstable response". A typical case for d=20 is shown in 

the figure. 

Unstable response can also be seen in Figure 9, in whch  the amplitude is calculated for 

several different values of the normal load pN. For pN = 2.0, the system response is stable 

(vibratory amplitude is single valued). Unstable behavior is clearly seen in cases of pN = 1.0 and 

1.5. For pN = 1.0, 

the response curve becomes connected, even though point jumps remain at frequencies between 

1.035 and 1.04. T h s  implies that for even lower p N  values, the system response will become 

stable again. The physical explanation of thls behavior is that a t  low pN values, the friction 

damping has little effect on the system response whch  is primarily dominated by the constant 

stiffness k and viscous damping c, and consequently, the system behaves linearly. For h g h  pN 

values, the friction element is partially stuck due to the stronger friction resistance. Under this 

condition, neither of the limit stops is hlt during the motion cycle. As a result the energy 

dissipation per cycle monotonously increases with amplitude, and the system response is stable. For 

normal loads in the median range, as the cases of pN = 1.5 and 1.0 shown in the figure, the 

For pN = 1.5, the vibratory amplitude has two disconnected response curves. 

limit stops are h t  by the element during the motion cycle. The system response becomes meta- 

stable or unstable. Ths is due to the fact that the energy dissipated by friction per cycle 
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remains constant whle, because of the limit stops, the element stiffness significantly increases 

with amplitude. This results in the multi-valued response indicated in Figure 9 .  

Multi-valued behavior is also seen in Figure 10; where the amplitude is calculated for 

various stiffness ratios k, / k .  A region of unstable behavior is seen for k, / k =  0.25, where a 

disconnected closed curve occurs. The appearance of disconnected regions in the more general 

system model analyzed here agrees well with those observed in Iwan’s I 1  I work. 

The effect of static load f ,  on the vibratory amplitude frequency response is shown in 

Figures 11  and 12. The static load causes a permanent offset represented by the symbol B, as 

indicated in equation 3. When the system is excited by a large excitation force fo at the 

resonant frequency, both limit stops ( shown in Figure 1 ) are h t  during the motion cycle, and 

the offset has little effect on the vibratory amplitude. However, at some off-resonant frequencies, 

the response is sufficiently low that there is a difference in the response since without the static 

preload the limit stops would not be encountered during the motion cycle. However, once the 

static load is applied, the permanent offset thus generated adds to the dynamic displacement and 

causes the friction element to hit one of the stops and reduces damping in the system. 

Consequently, the vibratory amplitude increases at off resonant frequencies as illustrated in the 

figure. 

Based on the above argument, it is then understandable that the static load may even raise 

This fact is depicted in the maximum amplitude of the system under low excitation force fo. 

Figure 12  where the maximum amplitude is increased when the static load f ,  = 10. 

Thus, it is seen that under certain conditions static preload can have a significant effect on 

vibratory response. For some excitation, the presence of a large static load may even eliminate 

the multi-valued response and stabilize the system. T h s  means that gravitational effects may 

strongly affect the dynamic response of structures that are ground tested and it might be quite 

different from the actual response that would occur in space. Therefore, t h s  effect needs to be 

carefully analyzed in order to properly interpret laboratory test data so as to predict the response 

of the full-scale structure in space. 
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3.2. Peak Amplitude Response’ 

First consider the system’s response when there are no stops to limit slip in the nonlinear 

element. The amplitude of peak response will then depend on how stiff the nonlinear spring k, 

(relative to the system’s stiffness, k )  and the value of the slip load, pN. Representative results 

are presented in Figure 13. For sufficiently large pN, the friction element is stuck and the 

system is linear. The system also behaves linearly when pN is zero since no energy is dissipated 

by friction. It can be seen from the plot that the friction damping effect is only significant for 

pN between 0 and some maximum value, pNmax. Furthermore, a minimum peak vibratory 

amplitude exists for a certain pN value, as shown in the figure. This fact has been discovered 

and experimentally verified by Griffin [3  I. 

Figure 14 shows the plot of resonant frequency vs. normal load pN at gap length 5 = 00. 

It is observed that resonant frequency increases with the normal load, and hits a maximum when 

the normal load is sufficiently large that the friction element is always stuck. Again t h s  

indicates that the effect of normal load is only significant over a finite range. 

The effect of gap length on the peak vibratory amplitude response is indicated by the 

results depicted in Figure 15. A plot of the resonant frequency vs. gap length is given in Figure 

16. In  both figures, the y in the abscissa denotes the nondimensional gap length introduced in 

equation 43. In both plots it can be seen that for constant normal load pN, a transition region 

exists in whch the gap length strongly affects the dynamic response. For gaps larger than a 

certain value, the limit stops shown in Figure 1 will no longer limit slip in the friction element 

and, consequently, further increases in gap length will not affect the peak response. It is clear 

that the gap length effect is only significant in the transition region. This is depicted in Figures 

17 and 18, whrch are the scaled versions of the Figures 15 and 16. The critical gap length dcr 

is defined as the value beyond whch  the peak response is unchanged. This value which will be 

investigated in the next section is used as the scale length in the abscissa for both plots. 

1 
Since in an unstable response condilion lhc system may have sevcral resonant amplitudes. herc to avoid ambiguily. “peak amplitude” 

refcrs 10 thc maximum resonant amplitude. 
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At 5=0 the system peak response is dominated by stiffness and viscous damping. At S=m, 

the system peak response depends on the stiffness, and both viscous and friction damping. The 

difference between the two amplitudes and frequencies are used to scale the ordinates in Figures 

17 and 18 respectively. 

Since the peak response is only affected by the normal load p N = O  to p N m l h ,  the results 

for different normal loads all lie fairly closely together in a band as indicated in Figure 17 for 

amplitude and Figure 18 for frequency. I t  was shown in Figure 13, that the lowest peak 

response comes at a specific pN value (0.1 for the system considered here) and t h s  case 

provides a lower bound on the response when the data is depicted as in Figure 17. The normal 

loads which are greater or less than t h s  value then approach ths  common lower bound of the 

band. 

As the normal load goes to zero or when it approaches pNmax the system becomes linear 

and the stiffness has no effect on the lower bound curve of the band. However, an increase in 

the nonlinear element’s stiffness k, /k  can affect the upper bound of the curves. Ths  is shown in 

Figures 19  and 20 for peak amplitude and frequency respectively. 

3.3. The Effect of Critical Gap Length on Unstable Response 

The phenomenon of disconnected amplitude solutions is examined in ths section by 

considering the equations for maximum response. First, equation 17  is rearranged into the 

following form. 

-fq( A ,  B ) = I fo I / j/l. + (c/2mwrn)’ W,CA = g,( A ,  B I (om ) (24 )  

The offset B can be calculated from the first equation in 1 8  as a function of A and then 

w m  from the last equation in 18. Therefore, conceptually, functions 9, and f S  are dependent on 

the amplitude A only. Thus, these functions can be presented in a plot with amplitude A as the 

common abscissa. These are shown in Figures 21 and 22 for a range of values of fo  and f ,  

respectively. In the plots, the intersections indicate the resonant amplitudes. 

As can be seem, the function g is almost a linear function of A due to the fact that the 
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resonant frequency is nearly constant ( approximately 1.0 ). In Figure 21, it is clear that for 

different excitation levels, an unstable region of two disconnected amplitude response curves exists 

between points c l  and c2. Ths  is indicated by the three resonant amplitudes shown in the 

figure: the upper two values are the maximum and minimum amplitudes of the upper closed 

response curve, while the lowest one is the maximum amplitude of the lower response curve. 

Physically, point c l  indicates the maximum excitation for which the stable response is obtained. 

In t h s  situation, both of the limit stops shown in Figure 1 are not encountered by the friction 

element during the motion cycle. T h s  indicates that for constant excitation f,, a critical gap 

length B c r  exists beyond whch the response remains unchanged. Thls critical value can be 

obtained by the geometric requirement at point c l  that the slopes of the curves as well as their 

values are equal, i.e. 

= wc and - f ,  = 9, . when B is constant ( 2 5 )  
a f S  asS - -  -- - 
a A  a A  

Point c2 indicates the maximum excitation for disconnected solutions to appear. 

Alternatively, for constant excitation fo, t h s  point indicates the maximum gap length S m  for 

w h c h  the system has disconnected amplitude solutions. It is clear from the figure that in the 

disconnected amplitude response region, an  upper response curve exists ( indicated by the upper 

two resonant amplitudes ) when the friction element hits the stops during the motion cycle, w h l e  

a lower response curve exists ( indicated by the lower resonant amplitude ) when it does not 

reach at least one of the stops. Since the lower response curve is not affected by the gap 

stops are not hit ), the lower resonant amplitude is the same for gap lengths larger than or equal 

to S m  at a constant excitation lo. As can be seen in the figure, point c2 is where the friction 

element touches both of the stops at the lower resonant amplitude. Therefore, the gap length d m  

can be determined from the equation below 

where A, = the resonant amplitude at 6-00 (26) 

In the above, the A, is used since the lower resonant amplitude is the same for gap length 

larger than or equal to Sm. 
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The effect of static preload on the region where the disconnected solutions occur is 

depicted in Figure 22. It is apparent that the static load tends to play an on/off role on t h s  

region. When this load is below a certain value, only the lowest resonant amplitude is affected 

and the response remains disconnected. Once t h s  load is raised above a critical value ( 20 in 

the case shown ), the amplitude solutions become single valued. 

3.4. Minimum Gap Length for Vertical Jumps 

As was discussed in the last section, disconnected solutions exist between limit gaps Scr and 

Sm for constant excitation f',. For gap length less than Sm, the system response becomes 

connected; however, discrete point jumps remain. Thus, unstable response can occur until the gap 

length is further reduced below a limit Sj. 

The reponse depicted in Figure 23 may be used to illustrate this argument. The locus of 

vertical jumps is presented in broken lines which define a closed region. In t h s  plof the 

excitation f o  is varied wlulle the gap is kept constant. The intersections of the response curves 

and the jump locus indicate where individual point jumps occur. In the figure, it is clear that 

vertical jumps only occur when the limit stops shown in Figure 1 are h t  during the motion 

cycle. The jumps disappear when the excitation f o  is large enough that the response curve passes 

beyond point a, or a2 ( whchever is passed by secondly ). At constant excitation, the limit gap 

8 .  for vertical jump can be obtained when the response curve intersects the jump locus at either 

point a, or a2 ( whchever leads to the smaller Sj ). The choice between points a, and a, as 

the passing point is affected by the stiffness k, / k. When the stiffness k, / k+m, the response 

curve is more slanted to the left and point a, will be passed by first in decreasing gap length at 

constant excitation. The point a, is then the intersection used to determine the limit gap 6,. and 

vice versa. 

J 

In Figure 24, the effect of static preload on the jump locus is depicted. It is seen that 

the closed region of the jump locus is shrinked as the load is increased. At the same time, the 

jump limit gap 8, is raised in value. 

The limit gaps JCf, Sm. B j  as functions of the normal load pN are shown in Figure 25. 
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As shown in the plot, three regions exist. When the normal load pN approachs zero, regions I1 

and 111 shrink, and all the limit gaps Scr,  Sm, S tend to Infinity. The system response then 

becomes linear. 

J 

At a large value of pN, limit gap curves JCr and S m  superpose on each other, and the 

disconnected response ( region I 1) disapears. However, the discrete jumps (region I 11) remain. 

This remains the case until pN reaches pNmax, after which the friction element becomes stuck 

and the gap no longer affects response. As can be implied from the figure, the limit gap curves 

Scr, Jn, then descend to merge with S J  at one point. 

3.5. The Effects on the Transient Solutions 

One reason for studying the system’s steady-state is to gain a better understanding of its 

transient response. We have been examining conditions under which the steady-state response is 

unstable. These conditions also affect transient response. For example, when the system 

parameters are such that its response tends to be unstable then slightly altering one of the 

parameters can lead to quite different transient response. 

Figures 26 and 27 indicate how the gap affects the transient response. Figure 26 shows 

the initial response of the system while Figure 27 shows how the vibratory amplitude changes 

over a large period of time. Two cases are plotted in each figure, one corresponding to S=23 

and the other to S=30. For short times ( Figure 26 ), responses are identical. However, for 

longer times they differ radically. It is known from the previous sections that for conditions 

corresponding to unstable response, different initial conditions may lead to different vibratory 

amplitude at the steady-state. In  the previous section, we showed that the gap length also affects 

the unstable response. Consequently, even for the same initial conditions, changes in the gap 

. 

length can lead to quite different transient responses. 

The effect of static preload is illustrated in Figures 28 and 29. Again, Figure 28 shows 

In the plots of the displacement for short times, and Figure 29 shows the long t ime response. 

t h s  particular case, the load accentuates the response for short times, and attentuates it later. 
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In regard to the ground testing on a sub-scaled model of a large space structure, the above 

plots indicate an important result. The examples shown in Figures 27 and 29 imply that a larger 

gap may reduce the amplitude of response while the applied static load may contribute an 

opposite effect. Compared to the full-scale structure, the sub-scaled model tends to have larger 

joint tolerances relative to its smaller overall size. ’ In addition, a large static preload ( from 

gravity) may be present during ground testing. Since these two factors sometimes contribute 

opposite effects, they have an unknown qualitative and quantitative effect on the test results. 

This indicates the need for a careful analysis of the experiment data in order to predict properly 

the response of the full-scale structure in space. 

4. CONCLUSION 

The approximate solution method based on a describing function approach has been verified 

to be an effective tool in studying the response of systems containing a friction joint with limited 

slip. It is believed that t h s  approach could be extended to investigate the steady-state response 

of a large truss-like jointed structure and could provide a basis to calculate transient response. 

It has been found that under certain conditions the vibratory amplitude of the system may 

become multi-valued at certain excitation frequencies. A large jointed structure may have 

significant variations in the joint properties from joint to joint due to machining differences. As 

a result some of the joints may experience the conditions that lead to multi-value response. 

Consequently, it may be difficult to get repeatable experimental results since the structure may 

settle into different patterns of response depending on fairly subtle aspects of how the loads are 

applied. The difficulty is intensified for laboratory tests of sub-scaled models of space structures 

since the scatter in the joint’s free-play is relatively larger (with respect to the smaller 

dimensions of the model joint). 

This work also shows that in some circumstances, the presence of static preloads may affect 

significantly the system’s dynamic response. In t h s  case if a large structure is ground tested it 

may be necessary to first correlate the data with an analytical model of the structure that 

includes preload effects. Then eliminate the preloads in the model and predict its behavior in 

space. 
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Lastly, a way of looking at system response in terms of non-dimensionalized joint properties 

has been developed. These curves are useful because they indicate how sensitive a system is to 

changes in joint tolerances. When one make5 a scale-model of a joint the relative tolerances and 

free-play in the joint increase. The computed results indicate an approach for assessing system 

sensitivity to such changes. 
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5. FIGURES 
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1. APPENDIX : Calculation of Fourier Coefficient of Nonlinear Force f 

The variations of the nonlinear friction force f is considered as follows: 
n 

The friction contact sticks initially, and f varies linearly with slope kd. When fn = k p N ,  

it starts to slide , and f remains constant until the displacement x acheves an extremum or the 

friction contact hits either one of the stops. In the latter case, f again varies linearly with 

slope kd until x acheves an extremum. When the mass reverses direction, the contact point again 

sticks and the process repeats in the opposite direction.. 

II 

Given t h s  behavior, the nonlinear force can therefore be expressed as a function of the 

mass’s displacement during a cycle of oscillation. The Fourier coefficients can then be calculated 

in terms of the amplitude of vibration. To do ths ,  the displacement is assumed to be sinusoidal 

plus a D.C. offset, i.e. x = Acos 0 + B. Based on this, five different cases can be considered. 

Results for these cases are summarized in the following sections. 

P N  PN P N  Case 7. No slip : 0 1  A I-, and A - -  I B I - - A  
‘d ’d ‘ d  

For t h s  case, an unknown slip may occur during the transient response whch results in a 

permanent offset at steady-state. T h s  causes an equally unknown shift in the friction force 

indicated by 7 shown in Figure 2. The D.C. offset B and the mean value of f n  given by the 

Fourier coefficient f b  are related by f ,=  kdB - 7. Wlule they are not known explicitly ( their 

values depend on unknown initial conditions 1, they are limited in range, i.e. 

kdA-  pN S f, S p N - k , A  

In addition, the nonlinear element acts as a spring, i.e. 

(27) 

if f n  = f ,  + fccos 8 + fssin 8 then 

fc  = &,A 
fs = 0 

and the nonlinear force is in phase with the displacement. 

T h s  is the case when both the stop distances 6,. 6, are sufficiently large that slip is not 
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hndered. From Figure 3, the friction force can be divided into four sections during a 

Where 

8, = cos-' I 1 - - 
kdA 

8, = + e,  (29 )  

It is observed that the D.C. offset B has no effect on the nonlinear force f in t h s  case. 
n 

Using equations 27 and 28, the nonlinear force f can be expanded in a Fourier series as 
n 

f = f, + f c m  8 + fpsin e (30)  

Where 
f, = 0 

1 

t n  
f = - { ( 2 p N  - k,A ) sin 8, + k,AB, 1 

f = - 4 ( - ) ( 1 - -  IJN I J N )  
kdA 

n 

Case 3. slip with upper Limit : A + B  2 6 , + p .  " - 8 ,  s A - B  5 J,+- P N  

kd kd kd 

(31) 

In t h s  case (Figure 4). the upper stop is ht during the displacement cycle. Again, the 

nonlinear force can be separated in five sections, as shown below 

k,( B - 6 ,  ) + k,Acos 8 , o ~ e < e ,  
- PN 
( k,A - p N )  + k,Acos e , I e < e2 
PN , e 2 s  e < e ,  
k,( B - 6 ,  ) + k,Acos 6 , e j ~ e s 2 n  

(32)  

Where 
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e , = 2 n - c o s - 1 t - -  * 2pN 1 1  
kdA 

The Fourier coefficients can be derived from equations 32 , 33 as 

1 

2 n  
+ k,A( sin 8 ,  + sin 8, - sin 8, + 8, - n ) 1 

f ,  = - t  k,( B -  6, ) (  2 n  + e ,  - e,) + , m e ,  + e, - 28, ) - 
* 

1 

2 n  
f = -{ kd(B - SI)( sin 8, - sin 8,) + kdA( + 8, + 8, - 8, + sin 8, ) - 

+ pN( sin 8, + sin 8, - 2sin 

1 

) 1 

+ I - -  PN pN 
f = - 2 ( - )  t- 

A k** 
n 

(33 ,  

(34 )  

Case 4. S l i p  with Lower Limit : --S, P I A + B  5 SI+--. P A - B  2 S,+- P 
kd ' d  ' d  

In t h s  case, the lower stop is hit during the displacement cycle (Figure 5 ) .  As before, the 

nonlinear force f can be separated into four sections. 
n 

( p N  - k,A ) + k,Acos 8 , o 5 e < e, 

Where 

I 

k d A  

p N  + k,(B + S,) 

kdA 

e2 = 2n - -I { - 1 

e, = 2n - -I { 1 
pN - kdC B + 5,) 

k d A  

From equation 35 and 36, the Fourier coefficients are obtained. 
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1 

2n 
= -{ ,,N( 28 ,  - 8,  - 8,  + 2 n  ) + k,A( sin 8, + sin 8, - sin 8, - 8, 1 

f b  

+ k,( B + s, )(  e, - e, ) I  

1 

2n 
f = -{ pN( 2sin 8, - sin 8, - sin 8, ) + k,( B + 8, )( sin 8, - sin 8, ) - (37) 

pN B+s, pN 
f =-2(-){- - - + 1 )  

A k d A  
n 

C a s e 5 . S l i p w i t h B o t h L i m i t :  A + B 2 S I + - - ,  P K  A - B 2  S,+- Ph' 
'd - kd 

In t h s  case, both stops are hit during the displacement cycle(Figure 6). As before, the 

nonlinear force f can be divided into five sections. 

Where 

And the Fourier coefficients are derived from 38, 39 as 
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1 

2 n  
f ,  = --I k,( B - 5, ) (  8 ,  + 2 n  - 8,) + k,( B + 5 , ) (  8, - 8, ) 

+ k,A( sin 8, + sin e3 - sin 8, - sin 8, ) 

+ p ~ (  8,  + 8, - 8, - e, ) I  

1 

2 n  
f = -{ k,( B - 8 ,  ) (  sin 8, - sin 8 ,  ) + k,Ac 8 ,  + 8,+2n - 8 ,  - 8, ) 

+ k,( B + S ,  ) (  sin e3 - sin 8, ) 
+ pN( sin 8, - sin 8, +sin 8,- sin 8, ) I  

2 s  
f =- - ( - )  pN where S =  8 ,  + G, 
' 

From the above obtained results, the nonlinear force f n  can be written as 

f = f,( A ,  8 ,  pN,  k , ,  6,. 4,) + fc (  A . B ,  pN ,  k , ,  8 , .  5, )cos e 
+ f ( A , B , p N , k, , S , S )sin 8 

The three coefficients can be nondimensioniized as follows : 

f ,  = pN F,( a ,  1, y. q)  
f c  = pN Fc( a ,  1, y. q )  
f q =  pN FI( a, 1, y .  4 )  

where 

(40) 

(41 )  

(42)  

\ 


